Structure and Properties of Biodegradable Polymer Materials for Fused Deposition Modeling 3D Printing

Author:

Tian Jing,Zheng Yanyan,Ouyang Qing,Xue Ping,Guo Baohua,Xu Jun

Abstract

The properties of 3D printed products are closely related to the raw materials and the processes by which they are made. The processes of melting, depositing, and cooling of polymers affect the orientation, crystallinity, and microstructure of the product. These in turn influence the thermal, mechanical, optical, and other properties of the printed part. Among various 3D printing methods, filament and pellet extrusion-based fused deposition modeling (FDM) 3D printing is the cheapest and mostly adopted. In this chapter, the devices and some biodegradable polymer materials applicable in FDM 3D printing are briefly introduced. In the first part, preparation and the structure-property relationship of polylactic acid/polybutylene succinate blend filaments are discussed. Rheological, thermal properties of the raw materials and the properties of the printed parts were characterized. In the second part, a pellet extrusion 3D printer with a micro-screw was designed for using pellets of polyhydroxyalkanoate composites, which are difficult to produce filaments. The relationship between the screw parameters of the micro-screw extrusion 3D printer, rheological properties of the composites, and the printed product performance has been investigated. Combining theory and practical application will provide guidance for formulating biodegradable polymer materials and designing equipment for FDM 3D printing.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3