Some Commonly Used Speech Feature Extraction Algorithms
Author:
Publisher
IntechOpen
Link
http://www.intechopen.com/download/pdf/63970
Reference54 articles.
1. Hariharan M, Vijean V, Fook CY, Yaacob S. Speech stuttering assessment using sample entropy and Least Square Support vector machine. In: 8th International Colloquium on Signal Processing and its Applications (CSPA). 2012. pp. 240-245
2. Manjula GN, Kumar MS. Stuttered speech recognition for robotic control. International Journal of Engineering and Innovative Technology (IJEIT). 2014;3(12):174-177
3. Duffy JR. Motor speech disorders: Clues to neurologic diagnosis. In: Parkinson’s Disease and Movement Disorders. Totowa, NJ: Humana Press; 2000. pp. 35-53
4. Kurzekar PK, Deshmukh RR, Waghmare VB, Shrishrimal PP. A comparative study of feature extraction techniques for speech recognition system. International Journal of Innovative Research in Science, Engineering and Technology. 2014;3(12):18006-18016
5. Ahmad AM, Ismail S, Samaon DF. Recurrent neural network with backpropagation through time for speech recognition. In: IEEE International Symposium on Communications and Information Technology (ISCIT 2004). Vol. 1. Sapporo, Japan: IEEE; 2004. pp. 98-102
Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Entertainment social media based on deep learning and interactive experience application in English e-learning teaching system;Entertainment Computing;2025-01
2. Data augmentation using a 1D-CNN model with MFCC/MFMC features for speech emotion recognition;Automatika;2024-07-03
3. A Multiclass Semi-Supervised Deep Convolutional Generative Adversarial Network for Music Genre Classification Using Mel-Frequency Cepstral Coefficients;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24
4. Using Voice Technologies to Support Disabled People;Journal of Disability Research;2024-01-05
5. VGGish Deep Learning Model: Audio Feature Extraction and Analysis;Lecture Notes in Networks and Systems;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3