Aero Heating Optimization of a Hypersonic Thermochemical Non-Equilibrium Flow around Blunt Body by Application of Opposing Jet and Blunt Spike

Author:

Renane Rachid,Allouche Rachid,Zmit Oumaima,Bouchama Bouchra

Abstract

The goal of this work is to give optimum aerothermal solutions for thermal protection of the nose wall of space shuttles during atmospheric reentry, where the air flow is hypersonic, nonequilibrium reactive flow (vibrational and chemical) behind detached shock waves, it’s governed by Navier–Stokes equations with chemical reaction source terms, and modelled using five species (N2, O2, NO, N, O) and Zeldovich chemical scheme with five reactions. This study which simulates the flow using the software Fluent v.19 focuses on the comparison between three protection techniques based on the repulsion of the shock wave, the first is geometric, it consists in introducing a spike that makes the right shock move away from the nose of the shuttle, this allows the endothermic physicochemical processes of dissociation and ionization to absorb heat, the second technique is based on an opposite jet configuration in the frontal region of the nose, this jet allows to push the strong shock, and consequently reduce the heat released, the last technique is the assembly of the two previous techniques; Jets nearby the spike noses were set up in front of the blunt body to reconfigure the flow field and reduce aerodynamic overheating. The opposing jet model reduces the heat at the nose by 12.08% compared to the spike model and by 20.36% compared to the spike jet model. The flow field reconfiguration was the most important factor in heat reduction, according to the quantitative analysis, a combination parameter was given as the main criterion for designing spiked bodies with opposing jets for the goal of heat reduction based on the locations of the reattached shock and its interaction with the conical shock. The results obtained are in good agreement with the specialized literature.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3