Abstract
Thermal Energy Storage (TES) technologies based on Phase Change Materials (PCMs) with small temperature differences have effectively promoted the development of clean and renewable energy. Today, accurate thermal characterization is needed to be able to create an optimal design for latent heat storage systems. The thermo-physical properties of PCMs, namely latent heat, phase-change temperatures, enthalpy and specific heat capacity are obtained by means of differential scanning calorimetry (DSC), which is one of the most widely used techniques to study reactions related to the transformation of a material subjected to temperature constraints. This method presents some limitations due, among other things, to the fact that only a very small quantity (less than 90 mg) of material can be tested. Indeed, the small mass samples, taken out of the large testing specimen and out of testing system, is not representative of the thermal behavior of a material on a large scale. The Transient Guarded Hot Plate Technique (TGHPT) presents several advantages when compared to the commercially available thermal analysis methods (DSC, DTA) to determine PCM thermophysical properties. The most significant are large sample amount, optimized measuring time and a simple and economical built up.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献