Distinct Roles of the Principal Exchange-Correlation Energy and the Secondary Correlation Energy Functionals in the MGC-SDFT-UHFD Decoupling

Author:

Kusunoki Masami

Abstract

The Kohn-Sham formalism for the density functional theory (DFT) proposed a half-century ago has been the extensive motive force for the material science community, despite it is incomplete because of its problematic notion of eternally-unknown correlation energy functional including a separated part of kinetic energy. Here, we widely explain an alternative method recently discovered by us, i.e. the multiple grand canonical spin DFT (MGC-SDFT) in the unrestricted Hartree-Fock-Dirac (MGC-SDFT-UHFD) approximation. It is proved that the correlation energy functional consists of well-defined principal and secondary parts: the former yields the principal internal energy functional responsible for a set of the one-body quasi-particle spectra defined by the respective ground and excited states with each natural LCAO-MO as well as a set of the expected values of Heisenberg spin Hamiltonian, and the latter does a well-defined spin-dependent perturbation energy responsible for some many-body effects. An application will be made to explain why the water-splitting S1-state Mn4CaO5-clusters in photosystem II can exhibit two different EPR signals, called “g4.8” and “g12-multiline”. Moreover, the secondary correlation energy part will be shown to promote Cooper-pairings of Bloch-electrons near Fermi level in the superconductor, provided that their eigenstates might be exactly determined by the MGC-SDFT-UHFD method.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3