Types of Nonlinear Interactions between Plasmonic-Excitonic Hybrids

Author:

Gambhir Kaweri,G. Vedeshwar Agnikumar

Abstract

The unique ability of plasmonic structures to concentrate and manipulate photonic signals in deep sub-wavelength domain provides new efficient pathways to generate, guide, modulate and detect light. Due to collective oscillations exhibited by the conducting electrons of metallic nanoparticles, their local fields can be greatly enhanced at the localized surface plasmon resonance (LSPR). Hence, they offer a versatile platform, where localized surface plasmons can be tuned over a broad range of wavelengths by controlling their shape, size and material properties. It has been realized that plasmonic excitations can strengthen nonlinear optical effects in three ways. First, the coupling between the incident beam of light and surface plasmons results in a strong local confinement of the electromagnetic fields, which in turn enhances the optical response. Second, the sensitivity of plasmonic excitations toward the dielectric properties of the metal and the surrounding medium forms the basis for label-free plasmonic sensors. Finally, the excitation and relaxation dynamics of plasmonic nanostructures responds to a timescale of femtoseconds regime, thus allowing ultrafast processing of the incident optical signals. This chapter aims to discuss all the aforementioned interactions of plasmons and their excitonic hybrids in detail and also represent a glimpse of their experimental realizations.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3