Electrical Circuits as Dynamical Systems

Author:

G. Gheorghe Alexandru,E. Marin Mihai

Abstract

An electrical circuit containing at least one dynamic circuit element (inductor or capacitor) is an example of a dynamic system. The behavior of inductors and capacitors is described using differential equations in terms of voltages and currents. The resulting set of differential equations can be rewritten as state equations in normal form. The eigenvalues of the state matrix can be used to verify the stability of the circuit. The most fitted numerical methods to integrate electrical circuit differential equations are the Euler Method (Forward and Backward), the Trapezoidal Rule, and the Gear Method of second to sixth degree, for circuits having stiff equations. These methods are implemented, with adjustable time-step integration, in the majority of circuit simulation software, such as SPICE. The analytical solution can also be computed, for small-size circuits, applying the Laplace Transform. It is interesting to compare the graphical presentation of numerically and analytically obtained solutions. While the numerical methods can be used for both linear and nonlinear circuits, the Laplace Transform is mostly used for linear circuits. A method of using it for nonlinear circuits is also presented.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3