Bayesian Multilevel Modeling in Dental Research

Author:

Tino-Salgado Edilberta,Godínez-Jaimes Flaviano,Vargas-De-León Cruz,Samanta Romero-Castro Norma,Reyes-Fernández Salvador,Othon Serna-Radilla Victor

Abstract

Clinical designs in dentistry collect measurements of the teeth of each subject, forming complex data structures; however, standard statistical methods (Student’s t-test, ANOVA, and regression models) do not treat the data as a grouped data type; that is, the measurements are treated as independent despite not being the case. A disadvantage of not considering the dependence on multilevel data is that if there is a significant correlation between the observations, it is ignored by the researcher and consequently finds statistically significant results when in fact they are not. Bayesian methods have the advantage of not assuming normality, unlike maximum likelihood estimation, and Bayesian methods are appropriate when you have small samples. We showed the minimum statistical theory for the use of multilevel models in dental research when the response variable is numerical. In this regard, it was proposed to carry out a Bayesian multilevel analysis to determine the clinical factors associated with the depth of periodontal probing. We adapted the bottom-up strategy to specify a multilevel model in the frequentist approach to the Bayesian approach. We checked the adequacy of the fit of the postulated model using posterior predictive density.

Publisher

IntechOpen

Reference13 articles.

1. Kim JS, Kim D-K, Hong SJ. Assessment of errors and misused statistics in dental research. International Dental Journal. 2011;61(3):163-167

2. Wang J, Xie H, Fisher JF. Multilevel Models, Applications Using SAS. Berlin, Germany: de Gruyter; 2011. DOI: 10.1515/9783110267709

3. Joop J Hox, Mirjam Moerbeek y Rens Van de Schoot. Multilevel Analysis: Techniques and Applications. New York, United States: Routledge; 2017

4. Gilks WR, Richardson S, Spiegelhalter D. Markov Chain Monte Carlo in Practice. Florida, United States: CRC Press; 1995

5. Matthew D Hoffman, Andrew Gelman y col. The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. The Journal of Machine Learning Research 2014;15(1):1593–1623

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3