Improvement of Abiotic Stress Tolerance in Plants with the Application of Nanoparticles

Author:

Nawaz Saba,Maqsood Iqra,Batool Fatima,Y. Sandhu Zainab,Hassan Sameera,Akram Faheem,Rashid Bushra

Abstract

Plants are under the threat of climatic changes and there is a reduction in productivity and deterioration in quality. The application of nanoparticles is one of the recent approaches to improve plant yield and quality traits. A number of nanoparticles, such as zinc nanoparticles (ZnO NPs), iron nanoparticles (Fe2O3 NPs), silicon nanoparticles (SiO2 NPs), cerium nanoparticles (CeO2 NPs), silver nanoparticles (Ag NPs), titanium dioxide nanoparticles (TiO2 NPs), and carbon nanoparticles (C NPs), have been reported in different plant species to play a role to improve the plant physiology and metabolic pathways under environmental stresses. Crop plants readily absorb the nanoparticles through the cellular machinery of different tissues and organs to take part in metabolic and growth processes. Nanoparticles promote the activity of a range of antioxidant enzymes, including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), in plant species, which in turn improve the growth and development under stressful conditions. The present review focuses on the mode of action and signaling of nanoparticles to the plant systems and their positive impact on growth, development, and ROS scavenging potential. The appropriate elucidation on mechanisms of nanoparticles in plants leads to better growth and yields under stress conditions, which will ultimately lead to increased agricultural production.

Publisher

IntechOpen

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3