Multi-Metric Near-Optimal Image Denoising

Author:

Hara Kenji,Inoue Kohei

Abstract

It is necessary to optimize the parameters for each image input to achieve the maximum denoising performance because the performance of denoising algorithms depends largely on the selection of the associated parameters. The commonly used objective image quality measures in quantitatively evaluating a denoised image are PSNR, SSIM, and MS-SSIM, which assume that the original image exists and is fully available as a reference. However, we do not have access to such reference images in many practical applications. Most existing methods for no-reference denoising parameter optimization either use the estimated noise distribution or a unique no-reference image quality evaluation measure. In the chapter, for BM3D, which is a state-of-the-art denoising algorithm, we introduce a natural image statistics (NIS) based on the generalized Gaussian distribution (GGD) and the elastic net regularization (EN) regression method and propose its use to perform the BM3D parameter optimization for PSNR, SSIM, and MS-SSIM, respectively, which are the popular image quality evaluation measures, without reference image and knowledge of the noise distribution. Experimental results with several images demonstrate the effectiveness of the proposed approach.

Publisher

IntechOpen

Reference30 articles.

1. Wang Z, Bovik AC, Sheikh H, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing. 2004;13(4):600-612. DOI: 10.1109/TIP.2003.819861

2. Wang Z, Simoncelli EP, Bovik AC. Multi-scale structural similarity for image quality assessment. In: Proceedings of the 37th IEEE Asilomar Conference on Signals, Systems & Computers; 9-12 November 2003. Pacific Grove, CA, USA: IEEE; 2003. pp. 1398-1402

3. Golub GH, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics. 1979;21(2):215-223. DOI: 10.1080/00401706.1979.10489751

4. Girard DA. The fast Monte Carlo cross validation and CL procedures: Comments, new results and application to image recovery problems. Computational Statistics. 1995;10:205-258

5. Hansen PC. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review. 1992;34(4):561-580. DOI: 10.1137/1034115

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3