Author:
Ferreira Ronaldo,José de Castro Ferreira Joaquim,José Ribeiro Neves António
Abstract
The objective of this work is to present an object tracking algorithm developed from the combination of random tree techniques and optical flow adapted in terms of Gaussian curvature. This allows you to define a minimum surface limited by the contour of a two-dimensional image, which must or should not contain a minimum amount of optical flow vector associated with the movement of an object. The random tree will have the purpose of verifying the existence of superfluous vectors of optical flow by discarding them, defining a minimum number of vectors that characterizes the movement of the object. The results obtained were compared with those of the Lucas-Kanade algorithms with and without Gaussian filter, Horn and Schunk and Farneback. The items evaluated were precision and processing time, which made it possible to validate the results, despite the distinct nature between the algorithms. They were like those obtained in Lucas and Kanade with or without Gaussian filter, the Horn and Schunk, and better in relation to Farneback. This work allows analyzing the optical flow over small regions in an optimal way in relation to precision (and computational cost), enabling its application to area, such as cardiology, in the prediction of infarction.