The Microstructure and Mechanical Properties of the Aluminum Alloy (AA 6061 T6) under the Effect of Friction Stirs Processing

Author:

Toma Bane Karash Emad,Takey Elias Kassim Mohammad

Abstract

The following chapter study the friction stir processes (FSP) is used to improve the surface characteristics of the alloy AA6061-T6 on the surface topography, hardness, tension mechanical characteristics, and microstructures of aluminum alloy, the impacts of friction stir process tool travel and rotation speeds were investigated. All friction stir processes (FSW) in this investigation used a cylindrical tool without a pin that had a 20 mm diameter, rotated at different rotating speeds 800, 1000, 1250, and 1600 rpm, and at different travel speeds 32, 63, and 80 mm per minute. The examination of the current study’s data and the test results showed that in stir friction processes, hardness rises with cutting depth. The study of the crystal structure showed that the hardness increased by twice as much for two stages as it did for one stage. Additionally, it was observed that as cutting depth increased, the size of the granules representing engineering defects grew smaller. Additionally, in the case of two stages, the ratio of granule size to friction was twice as high as in the case of one step. According to the results, using a single-stage friction stir process increased yield strength by 18% and tensile strength by 9.5%, while using a two-stage friction stir process increased yield strength by 20.4% and tensile strength by 11.5% when compared to metal basis.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3