Author:
Čolak Emina,Žorić Lepša,Mirković Miloš,Mirković Jana,Dragojević Ilija,Mirić Dijana,Kisić Bojana,Nikolić Ljubinka
Abstract
Age-related macular degeneration (AMD) is a complex, degenerative and progressive chronic disease that leads to severe visual loss. The prevalence of early AMD accounts for 18% in the population between 65 and 74 years of age and even 30% in subjects older than 74 years. The articles published in the last decade point out to a significant role of oxidative stress in the onset and development of age-related macular degeneration. Generally, reactive oxygen species (ROS) are produced in the eye during light absorption and physiological metabolic processes. The level of oxidative stress is kept under control by the action of antioxidants and reparative enzymes. Excessive synthesis of ROS leads to increased oxidative modification of lipids, proteins and DNA, causing oxidative damage of cytoplasmic and nuclear cell elements and changes of the extracellular matrix. The accumulation of oxidatively modified compounds in drusen deposits will initiate the onset and development of AMD. The objective of this review was to highlight the mechanisms of oxidative stress in order to elucidate their significance and association with the pathogenesis of AMD.