Clustering Techniques for Land Use Land Cover Classification of Remotely Sensed Images

Author:

Chakraborty Debasish

Abstract

Image processing is growing fast and persistently. The idea of remotely sensed image clustering is to categorize the image into meaningful land use land cover classes with respect to a particular application. Image clustering is a technique to group an image into units or categories that are homogeneous with respect to one or more characteristics. There are many algorithms and techniques that have been developed to solve image clustering problems, though, none of the method is a general solution. This chapter will highlight the various clustering techniques that bring together the current development on clustering and explores the potentiality of those techniques in extracting earth surface features information from high spatial resolution remotely sensed imageries. It also will provide an insight about the existing mathematical methods and its application to image clustering. Special emphasis will be given on Hölder exponent (HE) and Variance (VAR). HE and VAR are well-established techniques for texture analysis. This chapter will highlight about the Hölder exponent and variance-based clustering method for classifying land use/land cover in high spatial resolution remotely sensed images.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3