Citrus Biotechnology: Current Innovations and Future Prospects

Author:

Mustafa Ghulam,Usman Muhammad,Ahmad Joyia Faiz,Sarwar Khan Muhammad

Abstract

Citrus is a valuable fruit crop worldwide. It not only provides essential minerals and vitamins but is also of great commercial importance. Conventional research has contributed a lot to the improvement of this fruit plant. Numerous improved varieties have been developed through conventional breeding, mutational breeding, polyploidization and tissue culture yet pathogens continue to emerge at a consistent pace over a wide range of citrus species. Citriculture is vulnerable to various biotic and abiotic stresses which are quite difficult to be controlled through conventional research. Biotechnological intervention including transgenesis, genome editing, and OMICS offers several innovative options to resolve existing issues in this fruit crop. Genetic transformation has been established in many citrus species and transgenic plants have been developed having the ability to tolerate bacterial, viral, and fungal pathogens. Genome editing has also been worked out to develop disease-resistant plants. Likewise, advancement in OMICS has helped to improve citrus fruit through the knowledge of genomics, transcriptomics, proteomics, metabolomics, interactomics, and phenomics. This chapter highlights not only the milestones achieved through conventional research but also briefs about the achievements attained through advanced molecular biology research.

Publisher

IntechOpen

Reference127 articles.

1. Swingle WT. A new taxonomic arrangement of the orange subfamily, Aurantioideae. Journal of Washington Academy of Sciences 1938;28(1) 530-533

2. Food and Agriculture Organization. Crops country data. http://faostat.fao.org/site/339/default.aspx (assessed 20 May 2021)

3. Mendonca LBP, Badel JL, Zambolim L. Bacterial citrus diseases: Major threats and recent progress. Bacteriol Mycol Open Access. 2017;5(4):340-350

4. Swingle WT., Reece PC. The botany of Citrus and its wild relatives. In: Reuther W., Weber HJ., Batchelor LD. (eds.) The Citrus Industry Volume 1, History, World Distribution, Botany and Varieties. Berkeley: University of California Press; 1967. p 190-243

5. Garcia-Lor A, Curk F, Snoussi-Trifa H, Morillon R, Ancillo G, Luro F, Navarro L, Ollitrault P. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Annals of Botany 2013;111(1) 1-9

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3