Modern State of the Conventional DFT Method Studies and the Limits Following from the Quantum State of the System and Its Total Spin

Author:

G. Kaplan Ilya

Abstract

At present, the density functional theory (DFT) approach became the most widely used method for study molecules and solids. In the atmosphere of such great popularity, it is particularly important to know the limits of the applicability of DFT methods. In this chapter, I will discuss the modern state of DFT studies basing on the last publications and will consider in detail two cases when the conventional DFT approaches, in which used only electron density and its modifications by gradients, cannot be applied. First, the case related to the total spin S of the state. As I rigorously proved for an arbitrary N-electron state by group theoretical methods, the electron density does not depend on the total spin S of the state. From this follows that the Kohn-Sham equations have the same form for states with different S. The critical survey of elaborated DFT procedures, in which the spin is taken into account, shows that they modified only exchange functionals, and the correlation functionals do not correspond to the spin of the state. The point is that the conception of spin in principle cannot be defined in the framework of the electron density formalism, and this is the main reason of the problems arising in the study by DFT approaches the magnetic properties of the transition metals. The possible way of resolving spin problems can be found in the two-particle reduced density matrix formulation of DFT. In the end, it will be considered the case of the degenerated states, in which, as follows from the adiabatic approximation, the electron density may not be defined, since electronic and nuclear motions cannot be separated, since, the vibronic interaction mixed them.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3