Modified Bagging in Linear Discriminant Analysis: Machine Learning

Author:

El Gimati Yousef

Abstract

The main idea of this work is the use of machine learning of BAGGING or Bootstrap AGGregatiING, which is extended to average the classifiers based on a distance function. The idea of this function is to find the shortest distance from each data point to the classification boundary by using ‘Manhattan’ distance in decision trees and alternative distance measure is the ‘Mahalanobis’ distance used for Linear Discriminant Analysis or LDA, called modified bagging in this work. Thus providing a weighted voting system instead of equal weight voting, the classification error is reduced. Modified bagging is a viable option to reduce the variance which is a component of the classification error. Referring to the analysis, we conclude that modified bagging gives statistically significant improvement in Ripley’s data set with different bootstrap sample sizes.

Publisher

IntechOpen

Reference9 articles.

1. MacQueen J. Some methods for classification and analysis of multivariate observations. In: Lecam LM, Neyman J, editors. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, CA: California Unversity Press; 1967. pp. 281-297

2. Fisher RA. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 1936;7:179-180

3. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning – Data mining, inference, and prediction. In: Springer Series in Statistics. New York, NY: Springer; 2017

4. Breiman L. Bagging predictors. Machine Learning. 1996a;26:123-140

5. Efron B, Tibhirani R. An Introduction to the Bootstrap. London: Chapman & Hall; 1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3