Author:
Zheng Junjun,Okamura Hiroyuki,Dohi Tadashi
Abstract
In this chapter, we introduce a stochastic framework to evaluate the system availability of an intrusion tolerant system (ITS), where the system undergoes patch management with a periodic vulnerability checking strategy, i.e., pull-type patch management. In particular, a composite stochastic reward net (SRN) is developed to capture the overall system behaviors, including vulnerability discovery, intrusion tolerance, and reactive maintenance operations. Furthermore, two kinds of availability criteria, the interval availability and the steady-state availability of the system, are formulated by applying the phase-type (PH) approximation to solve the Markov regenerative process (MRGP) model derived from the composite SRN. Numerical experiments are conducted to investigate the effects of the vulnerability checking interval on the system availability.