Author:
Awasthi Peeyush,Yadav Ashwin,Naik Naren,Ramaswamy Ananthasayanam Mudambi
Abstract
One of the well-known approaches to target tracking is the Kalman filter. The problem of applying the Kalman Filter in practice is that in the presence of unknown noise statistics, accurate results cannot be obtained. Hence the tuning of the noise covariances is of paramount importance in order to employ the filter. The difficulty involved with the tuning attracts the applicability of the concept of Constant Gain Kalman Filter (CGKF). It has been generally observed that after an initial transient the Kalman Filter gain and the State Error Covariance P settles down to steady state values. This encourages one to consider working directly with steady state or constant Kalman gain, rather than with error covariances in order to obtain efficient tracking. Since there are no covariances in CGKF, only the state equations need to be propagated and updated at a measurement, thus enormously reducing the computational load. The current work first applies the CGKF concept to heterogeneous sensor based wireless sensor network (WSN) target tracking problem. The paper considers the Standard EKF and CGKF for tracking various manoeuvring targets using nonlinear state and measurement models. Based on the numerical studies it is clearly seen that the CGKF out performs the Standard EKF. To the best of our knowledge, such a comprehensive study of the CGKF has not been carried out in its application to diverse target tracking scenarios and data fusion aspects.