Power Quality in Renewable Energy Microgrids Applications with Energy Storage Technologies: Issues, Challenges and Mitigations

Author:

Hernández Mayoral Emmanuel,Dueñas Reyes Efraín,Iracheta Cortez Reynaldo,J. Martínez Hernández Carlos,D. Aguilar Gómez Carlos,R. Jiménez Román Christian,D. Rodríguez Romero Juan,Rodríguez Rivera Omar,F. Mendoza Santos Edwin,Durante Gómez Wilder,I. Barreto Muñoz José

Abstract

Nowadays, the electric power distribution system is undergoing a transformation. The new face of the electrical grid of the future is composed of digital technologies, renewable sources and intelligent grids of distributed generation. As we move towards the electrical grid of the future, microgrids and distributed generation systems become more important, since they are able to unify small-scale and flexible generation to clean energy and intelligent controls. The microgrids play an important role in marking electrical grids more robust in the face of disturbances, increasing their resilience. Although the microgrid concept continues in discussion in technical circles, it can be defined as an aggregation of electrical elements in low generation voltage, storage and loads (users) which are grouped in a certain bounded geographical area. The issues of a microgrid integrated with energy storage technologies has gained increasing interest and popularity worldwide as these technologies provide the reliability and availability that are required for proper operation in the system. Actual studies show that the implementation of energy storage technologies in a microgrid improves transients, capacity, increases instantaneous power and allows the introduction of renewable energy systems. However, there are still certain unsolved problems in power quality terms. This article clearly describes those problems generated by each storage technology foe microgrids applications. All the ideas in this review contribute significantly to the growing effort towards developing a cost-effective and efficient energy storage technology model with a long-life cycle for sustainable implementation in microgrids.

Publisher

IntechOpen

Reference157 articles.

1. “EPRI–DOE of Energy Storage for Transmission and Distribution Applications,” EPRI, and the U.S. Department of Energy, Palo Alto and Washington, CA and DC, 2003, EPRI–DOE no. 1001834

2. S. B. groupe Energie, “Energy Storage Technologies for Wind Power Integration,” Tech. Rep., Université Libre de Bruxelles, Faculté des Sciences Appliquées, 2010

3. “EPRI–DOE Handbook Supplement of Energy Storage for Grid Connected Wind Generation Applications,” EPRI, and the U.S. Department of Energy, Palo Alto and Washington, CA and DC, 2004, EPRI–DOE no. 1008703

4. Manz D, Schelenz O, Chandra R, Bose S, de Rooji M, Bebic J. Enhanced Reliability of Photovoltaic Systems with Energy Storage and Controls, Tech. Rep., National Renewable Energy Laboratory, 2008

5. Ton D, Peek GH, Hanley C, Boyes J. Solar Energy grid Integration Systems Energy Storage (SEGIS-ES), Sandia Nat. Labs, 2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3