Abstract
We conducted a large-scale assessment at 35 primary forest sites and 42 secondary forest sites in Bach Ma National Park, central Vietnam, using the detection/non-detection data for each site over multiple visits, to quantify the site proportions that were occupied by granular spiny frogs (Quasipaa verrucospinosa). We additionally investigated the effect of site covariates (primary versus secondary forests) and sample covariates (temperature, humidity, and precipitation) to examine the environmental needs that may be incorporated for conserving rain forest amphibians in Vietnam. From the best model among all candidate models, We estimated a site occupancy probability of 0.632 that was higher than the naïve occupancy estimate of 0.403 and a 57% increase over the proportion of sites at which frogs were actually observed. The primary forest variable was an important determinant of site occupancy, whereas occupancy was not associated with the variable of secondary forest. In a combined AIC model weight, the detection model p (temperature, humidity, precipitation) included 90.9% of the total weight, providing clear evidence that environmental conditions were important sample covariates in modeling detection probabilities of granular spiny frogs. Our results substantiate the importance of incorporating occupancy and detection probabilities into studies of habitat relationships and suggest that the primary forest factor associated with environmental conditions influence the occupancy of granular spiny frogs.