Adsorption of Heavy Metals by Microwave Activated Shale/Asphaltite Char/Zeolite Granule Composts from Hazardous Sludges and Industrial Waste Slurries

Author:

İsmail Tosun Yıldırım

Abstract

There is a great concern about surface water pollution with high level mercury, lead (Pb) over 10 mg/l, 30 mg/l to the fishing lakes and streams in Şırnak Province even contaminating fresh water fishing and poisonening of human by merury and lead in thr region. The chromium over 50 mg/l from industrial seepages was disposed to lakes and streams in our country. There is a great green concern prompting land in order to control acidic mine waters so that the research study controlled and avoided hazardous metal limits of residual stream contaminants of heavy metals by sorption local clay and zeolite compost. The contamination rate changes to those based on seepage concentrations and wetness. The stream amendments, such as shale char carbonized from Şırnak asphaltite containing 52–60% shale activated by acid washing under microwave radiation as geo material composted for waste water treatment should control contaminated effluents concentration. The field studies to evaluate the stability of heavy metal concentrations and salts were scarce. The initial objective of this study was to determine the effects of seepage flow to surface and groundwater from the industrial discharge. In this study, important investigations have been made on composite granules production with Şırnak shale char and zeolite feed in order to activated in microwave oven 2 M HCl dissolution. The compost sorbent for high level heavy metal sorption in laboratory water packed bed column adsorption compost system. However, the results of filled packed bed zeolite yield high metal transfer to compost. Due to the complex chemistry of shale pores, and high porosity, heat conduction improved in the microwave sorption depended on granule size decreased. The other heavy metal sorption distribution was changed in the activation dependent on the microwave heating power.

Publisher

IntechOpen

Reference32 articles.

1. Nalbantcilar, MT, Pinarkara, SY, 2016, Public health risk assessment of groundwater contamination in Batman, Turkey, Water Health. 2016 Aug;14(4):650-61. doi: 10.2166/wh.2016.290

2. Çelik, R., 2015, Temporal changes in the groundwater level in the Upper Tigris Basin, Turkey, determined by a GIS technique, Journal of African Earth Sciences, Volume 107, July 2015, Pages 134–143

3. Disli, E., 2017, Hydrochemical characteristics of surface and groundwater and suitability for drinking and agricultural use in the Upper Tigris River Basin, Diyarbakir—Batman, Turkey, Springer, 2017, Environmental Earth Sciences 76(14), DOI: 10.1007/s12665-017-6820-5

4. S. Ahamed, A. Hussam, A.K.M. Munir, 2009, Groundwater Arsenic Removal Technologies Based on Sorbents: Field Applications and Sustainability, Handbook of Water Purity and Quality, Academic Press, Amsterdam (2009) 379–417

5. J.S. Ahn, C.M. Chon, H.S. Moon, K.W. Kim, 2003, Arsenic removal using steel manufacturing by-products as permeable reactive materials in mine tailing containment systems, Water Research, 37 (2003), pp. 2478–2488

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3