An Implementable and Stabilizing Model Predictive Control Strategy for Inverted Pendulum-Like Behaved Systems

Author:

S.L. de Abreu Odilon,A.F. Martins Márcio,Schnitman Leizer

Abstract

In control theory, the inverted pendulum is a class of dynamic systems widely used as a benchmarking for evaluating several control strategies. Such a system is characterized by an underactuated behavior. It is also nonlinear and presents open-loop unstable and integrating modes. These dynamic features make the control more difficult, mainly when the controller synthesis seeks to include constraints and the guarantee of stability of the closed-loop system. This chapter presents a stabilizing model predictive control (MPC) strategy for inverted pendulum-like behaved systems. It has an offset-free control law based on an only optimization problem (one-layer control formulation), and the Lyapunov stability of the closed-loop system is achieved by adopting an infinite prediction horizon. The controller feasibility is also assured by imposing a suitable set of slacked terminal constraints associated with the unstable and integrating states of the system. The effectiveness of the implementable and stabilizing MPC controller is experimentally demonstrated in a commercial-didactic rotary inverted pendulum prototype, considering both cases of stabilization of the pendulum in the upright position and the output tracking of the rotary arm angle.

Publisher

IntechOpen

Reference21 articles.

1. Ogata K. Modern Control Engineering. 5th ed. Upper Saddle River: Prentice Hall; 2010

2. Nise NS. Linear Systems Theory. 7th ed. Hoboken: Wiley; 2015

3. Rossiter JA. Model-Based Predictive Control: A Practical Approach. Boca Raton: CRC Press; 2003

4. Camacho EF, Bordons C, Alba CB. Model Predictive Control. London: Springer; 2004

5. Maciejowski JM. Predictive Control: With Constraints. Harlow: Pearson Education; 2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3