The Cytological Mechanism of Apospory in Paspalum notatum Analyzed by Differential Interference-Contrast Microscopy

Author:

Chen Lanzhuang,Guan Liming

Abstract

Bahia grass (Paspalum notatum Flugge) is an important tropical forage grass and sets seed by apospory. I) To clarify the mechanisms of aposporous embryo sac initial cell (AIC) appearance and apomictic embryo sac formation, and II) to make it clear the mechanism of multiple embryo seed set a development in polyembryonic ovules, several apomictic and sexual varieties of bahia grass were studied cytologically and quantitatively by Nomarski differential interference-contrast microscopy. The results were I) there was no difference between sexual and apomicts to megasporogenesis; and then, the megaspore degenerated in apomicts; at the same time, AIC originated from nucellar tissue appeared and its numbers increased as the ovary grew before anthesis; II) at anthesis, the sac derived from AIC located in the micropylar end (first sac) were 92.5 to 100%, and those in the chalazal ends (other sacs) were 40.4 to 86.0% among the apomicts; the first sac divided dominantly and were 56 to 87% comparable to 0 to 1% of the other sacs at 4 days after anthesis; however, 4 to 17% of the other sacs also showed embryo formations but endosperm. In final, the first sac occupied the whole space of the ovule, in which the embryos in the other sacs coexisted.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3