Synthesis of Nano-Optical Elements for Forming 3D Images at Zero Diffraction Order

Author:

Goncharsky Anton,Durlevich Svyatoslav

Abstract

A method is proposed to compute and synthesize a nano-optical element to produce a new visual effect: a 3D image formed in the vicinity of zero diffraction order. Usual relief rainbow holograms or OVDs can form 3D effect, but at +1 or − 1 diffraction order only and they provide 3D parallax in left/right direction only, and after rotation/inclination of an element, a 3D image changes its color and further disappears completely. The new visual effect provides with full 3D parallax. Moreover, a 3D zero-order image is well visible when an optical element is rotated through 360 degrees; the color of 3D image does not depend on the viewing angle. A synthesis technology is developed incorporating the computation of scattering patterns in elementary areas, computation of the phase function of the entire optical element, and the formation of its microrelief by using e-beam lithography. The microrelief consists of multilevel kinoforms with an accuracy of 10 nm in terms of depth. It was demonstrated by experimental results that the new visual effect is easy for visual perception under white light illumination. A sample of nano-optical element is manufactured, which when illuminated by white light, forms a 3D image in the vicinity of zero-order of diffraction (video available at: https://bit.ly/3QtzxbI).

Publisher

IntechOpen

Reference23 articles.

1. Gabor D. A new microscopic principle. Nature. 1948;161:777-778

2. Benton SA. Hologram reconstructions with extended incoherent sources. Journal of the Optical Society of America. 1969;59:1545-1546

3. Yatagai T. Stereoscopic approach to 3-D display using computer-generated holograms. Applied Optics. 1976;15:2722-2729

4. Van Renesse RL. Optical Document Security. Artech House, Boston, USA: Artech House Optoelectronics Library; 2005

5. Van Renesse RL. Security aspects of commercially available dot matrix and image matrix origination systems. In: Proceeding to SPIE International Conference on Optical Holography and Its Applications. 2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3