1. Halperin E, Brady L, Perez C, Wazer D. Perez and Brady’s Principles and Practice of Radiation Oncology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. 2106 p
2. El Naqa I, Li R, Murphy M. Machine Learning in Radiation Oncology: Theory and Applications. Cham: Springer; 2015. 336 p. DOI: 10.1007/978-3-319-18305-3
3. Kansagra AP, Yu JP, Chatterjee AR, Lenchik L, Chow DS, Prater AB, et al. Big data and the future of radiology informatics. Academic Radiology. 2016;23(1):30-42. DOI: 10.1016/j.acra.2015.10.004
4. Lustberg T, van Soest J, Jochems A, Deist T, van Wijk Y, Walsh S, et al. Big data in radiation therapy: Challenges and opportunities. The British Journal of Radiology. 2017;90(1069):20160689. DOI: 10.1259/bjr.20160689
5. Oberije C, Nalbantov G, Dekker A, Boersma L, Borger J, Reymen B, et al. A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: A step towards individualized care and shared decision making. Radiotherapy and Oncology. 2014;112:37-43. DOI: 10.1016/j.radonc.2014.04.012