Synchrotron Based Techniques in Soil Analysis: A Modern Approach

Author:

Hota Surabhi

Abstract

Soil is a highly heterogenous system where a number of physical, chemical and biological processes are taking place. The study of these processes requires analytical techniques. The electromagnetic radiations in the form spectroscopy, X-Ray diffraction, magnetic resonance etc. have been used in the field of soil analysis since decades. The study of soil nutrients, mineralogy, organic matter and complex compounds in soils use these techniques and are successful tools till date. But these come with a limitation of lesser spatial and spectral resolution, time consuming sample preparation and destructive methods of study which are mostly ex-situ. In contrast to the conventional spectroscopic techniques, the synchrotron facility is of high precision and enables non-destructive study of the samples to a nano scale. The technique uses the high intensity synchrotron radiation which is produced in a special facility, where the electrons are ejected using very high voltage and accelerated in changing magnetic field, at a speed of light resulting in a very bright radiation that enables a very précised study of the subject. For example, in studying the dynamics of P and N in soils, SR aided XAS are used to study the K-edge spectra of these nutrients, without any matrix interference, which used to be a problem in conventional SEM, IR or NMR spectroscopy. These radiations provide high energy in GeV, which imparts high sensitivity and nanoscale detection. Basically, the SR facility improves the precision of the existing spectroscopic techniques. This chapter discusses how the Synchrotron radiations aid to improve precision in various field of soil analysis such as, carbon chemistry, nutrient dynamics, heavy metal and contaminant speciation and rhizosphere study. However, the technique also come with major limitations of requirement of very high skill for preparation of samples, inadequate availability of references for studies related to absorption spectrum and control of radiation damage. Applications and limitations of the technique thoroughly reviewed in this chapter with an aim to provide a brief idea of this new dimension of soil analysis.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3