Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge

Author:

Kravaris Theocharis,A. Vouros George

Abstract

Motivated to solve complex demand-capacity imbalance problems in air traffic management at the pre-tactical stage of operations, with thousands of agents (flights) daily, even in a restricted airspace, in this paper, we review deep multiagent reinforcement learning methods under the prism of their ability to scale toward solving problems with large populations of heterogeneous agents, where agents have to unavoidably decide on their joint policy, without communication constraints.

Publisher

IntechOpen

Reference58 articles.

1. Kravaris T, Spatharis C, Bastas A, Vouros GA, Blekas K, Andrienko G, Andrienko N, Garcia JM. Resolving congestions in the air traffic management domain via multiagent reinforcement learning methods. 14 December 2019. arXiv preprint arXiv:1912.06860

2. Sutton RS, Barto AG. Reinforcement learning: An introduction. Cambridge, Massachusetts, USA: MIT Press; 13 November, 2018

3. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control through deep reinforcement learning. Nature. 2015;518(7540):529-533

4. Tsitsiklis J, Van Roy B. Analysis of temporal-diffference learning with function approximation. Advances in Neural Information Processing Systems. 1996;9:1075-1081

5. Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N. Dueling network architectures for deep reinforcement learning. In: International Conference on Machine Learning. New York, NY, USA: JMLR: WCP; 11 June 2016. pp. 1995-2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Random Access Schemes for Massive Machine-Type Communication With MARL;IEEE Transactions on Machine Learning in Communications and Networking;2024

2. Integrating Distributed Component-Based Systems Through Deep Reinforcement Learning;Bridging the Gap Between AI and Reality;2023-12-14

3. Multi-Domain Active Learning for Multi-Agent Reinforcement Learning;2023 IEEE 2nd International Conference on Industrial Electronics: Developments & Applications (ICIDeA);2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3