Global Fertilizer Contributions from Specific Biogas Coproduct

Author:

N. Aso Sammy,C. Achinewhu Simeon,O. Iwe Madu

Abstract

The impact of Haber-Bosch process on modern agriculture is prodigious. Haber-Bosch process led to invention of chemical fertilizers that powered green revolution, minimized food scarcity, and improved human and animal nutrition. Haber–Bosch process facilitated agricultural productivity in many parts of the world, with up to 60% of crop yield increase attributed solely to nitrogen fertilizer. However, Haber-Bosch fertilizers are expensive, and their poor use efficiency exerts adverse external consequences. In European Union for example, the annual damage of up to € 320 (US$ 372.495) billion associated with chemical fertilizers outweighs their direct benefit to farmers, in terms of crops grown, of up to € 80 (US$ 93.124) billion. A substitute for chemical fertilizers is therefore needed. In this chapter, external costs of chemical fertilizers are highlighted. The capability of liquid fraction of cassava peeling residue digestate to supplant and mitigate pecuniary costs of chemical fertilizers required for production of cassava root is also analyzed and presented. Results indicate that about 25% of fund used to purchase chemical fertilizers required for cassava root production could be saved with the use of liquid fraction of cassava peeling residue digestate. The pecuniary value is estimated at US$ 0.141 (≈ € 0.121) billion for the 2019 global cassava root output. This saving excludes external costs associated with Haber-Bosch fertilizers such as ammonia air pollution, eutrophication, greenhouse gasses emissions, and contamination of potable water supply reserves. Consequently, liquid fraction digestate could reduce the cost of cassava root production, as well as minimize adverse health and environmental consequences attributed to chemical fertilizers.

Publisher

IntechOpen

Reference104 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dialing Back the Doomsday Clock with Circular Bioeconomy;From Biomass to Biobased Products [Working Title];2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3