Thermoluminescence Dosimetry Technique for Radiation Detection Applications

Author:

Donya Hossam

Abstract

Due to the risk of radiation exposure, radiation dosimetry is performed regularly to ensure the occupational safety of personnel and radiation workers. Therefore, various dosimeters are widely used to detect neutrons, gamma, X-ray, and proton irradiation fields. As an example, in medical applications, routine personal dosimetry is used to monitor and limit workers’ long-term occupational exposure. Radiation workers who undertake X-ray diagnostic, radiotherapy operations, in clinical and industrial application. Although, the overheads of running an in-house TLD (Thermoluminescent dosimetry) service for monitoring doses to eyes, pacemakers and so on seems rather high for the benefits conferred, however, it is still widely used for reporting doses accurately in various medical centers over the world. TLD also is widely used for measuring entrance doses on a handful of patients to validate a new LINAC/TPS combination. As well as in the industrial field as if petroleum, companies or nuclear reactor, RSO (radiation safety officer) used TLD badges to report delivered doses. In this chapter, we focus on the TLD technique for measuring doses of various ionizing radiation detection. Different methods for evaluations of TL Kinetics are covered. Modern TLD applications in the clinical field are also investigated. Some recommendations on advance dosimetry failure of TLD are concluded.

Publisher

IntechOpen

Reference58 articles.

1. Furuta Y, Tanaka S. Response of 6LiF and 7LiF thermoluminescence dosimeters to fast neutrons. Nuclear Instruments and Methods. 1972;104:36-374

2. Moreira Ribeiro R, Souza-Santos D. Monte Carlo characterization of an individual albedo neutron monitor. Brazilian Journal of Radiation Sciences. 2021;9(2C):1-8. DOI: 10.15392/bjrs.v9i2C.1657

3. El-Faramawy N, Chopra V, Rawash S, El-Hafez AA, Dhoble SJ. Response of TLD-600/TLD-700 and CR-39 to neutrons for medical dosimetry. Luminescence. 2021;36(5):1257-1264

4. Gibson AB, Piesch E. Technical Reports Series No. 252. Neutron Monitoring for Radiological Protection. Vienna: International Atomic Energy Agency. 1985

5. ICRU. Determination of Dose Equivalents Resulting from External Radiation Sources. In: Report 39, International Commission on Radiation Protection and Measurements. Bethesda, MD. 1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3