Molecular Informatics of Trypanothione Reductase of Leishmania major Reveals Novel Chromen-2-One Analogues as Potential Leishmanicides

Author:

K. Kwofie Samuel,B. Kwarko Gabriel,Broni Emmanuel,B. Adinortey Michael,D. Wilson Michael

Abstract

Trypanothione reductase (TR), a flavoprotein oxidoreductase is an important therapeutic target for leishmaniasis. Ligand-based pharmacophore modelling and molecular docking were used to predict selective inhibitors against TR. Homology modelling was employed to generate a three-dimensional structure of Leishmania major trypanothione reductase (LmTR). A pharmacophore model used to screen a natural compound library generated 42 hits, which were docked against the LmTR protein. Compounds with lower binding energies were evaluated via in silico pharmacological profiling and bioactivity. Four compounds emerged as potential leads comprising Karatavicinol (7-[(2E,6E,10S)-10,11-dihydroxy-3,7,11-trimethyldodeca-2,6-dienoxy]chromen-2-one), Marmin (7-[(E,6R)-6,7-dihydroxy-3,7-dimethyloct-2-enoxy]chromen-2-one), Colladonin (7-[[(4aS)-6-hydroxy-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]methoxy]chromen-2-one), and Pectachol (7-[(6-hydroxy-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl)methoxy]-6,8-dimethoxychromen-2-one) with good binding energies of −9.4, −9.3, 8.8, and −8.5 kcal/mol, respectively. These compounds bound effectively to the FAD domain of the protein with some critical residues including Asp35, Thr51, Lys61, Tyr198, and Asp327. Furthermore, molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) computations corroborated their strong binding. The compounds were also predicted to possess anti-leishmanial activity. The molecules serves as templates for the design of potential drug candidates and can be evaluated in vitro with optimistic results in producing plausible attenuating infectivity in macrophages.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3