Titanium Alloys: Thermomechanical Process Design to Achieve Superplasticity in Bulk Material

Author:

Kedia Bipin,Balasundar Ilangovan

Abstract

Titanium alloys subjected to suitable thermomechanical processing (TMP) schedules can exhibit superplasticity. Most studies on superplasticity of titanium alloys are directed to sheet materials while studies on bulk materials are rather limited. Bulk Superplastic materials require lower load for forging aeroengine components. It further facilitates forming using non-conventional processes such as superplastic roll forming (SPRF). Multi axial forging (MAF), is employed here to achieve bulk superplasticity by imparting large strain without any concomitant change in external dimension. A comparison between uniaxial and MAF with respect to strain, strain path, initial microstructure and heat treatment was carried out to ascertain the microstructure refinement in Ti-6Al-4V alloy. A fine-grained structure was obtained after 3 cycles of MAF followed by static recrystallization at 850°C. Grain boundary sliding was observed in identified processing domain along with strain rate sensitivity (SRS) of 0.46 and maximum elongation of 815%. Validation of established ther¬momechanical sequence on a scaled-up work piece exhibited 640% elongation in domain (T = 820°C, ε ̇= 3 x 10-4/s) which indicated that the established TMP scheme can be used on a reliable and repeatable basis to achieve superplasticity in bulk material.

Publisher

IntechOpen

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3