Abstract
Software engineering is one of the most utilizable research areas for data mining. Developers have attempted to improve software quality by mining and analyzing software data. In any phase of software development life cycle (SDLC), while huge amount of data is produced, some design, security, or software problems may occur. In the early phases of software development, analyzing software data helps to handle these problems and lead to more accurate and timely delivery of software projects. Various data mining and machine learning studies have been conducted to deal with software engineering tasks such as defect prediction, effort estimation, etc. This study shows the open issues and presents related solutions and recommendations in software engineering, applying data mining and machine learning techniques.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献