Phytoremediation of Arsenic Contaminated Water Using Aquatic, Semi-Aquatic and Submerged Weeds

Author:

Roy Dibakar,Sreekanth Dasari,Pawar Deepak,Mahawar Himanshu,K. Barman Kamal

Abstract

Arsenic (As) is the one the most toxic element present in earth which poses a serious threat to the environment and human health. Arsenic contamination of drinking water in South and Southeast Asia reported one of the most threatening problems that causes serious health hazard of millions of people of India and Bangladesh. Further, use of arsenic contaminated ground water for irrigation purpose causes entry of arsenic in food crops, especially in Rice and other vegetable crops. Currently various chemical technologies utilized for As removal from contaminated water like adsorption and co-precipitation using salts, activated charcoal, ion exchange, membrane filtration etc. are very costly and cannot be used for large scale for drinking and agriculture use. In contrast, phytoremediation utilizes green plats to remove pollutants from contaminated water using various mechanisms such as rhizofiltration, phytoextraction, phytostabilization, phytodegrartion and phytovolatilization. A large numbers of terrestrial and aquatic weed flora have been identified so far having hyper metal, metalloid and organic pollutant removal capacity. Among the terrestrial weed flora Arundo donax, Typha latifolia, Typha angustifolia, Vetivaria zizinoids etc. are the hyper As accumulator. Similarly Eicchornea crassipes (Water hyacinth), Pistia stratiotes (water lettuce), Lemna minor (duck weed), Hyrdilla verticillata, Ceratophyllum demersum, Spirodella polyrhiza, Azola, Wolfia spp., etc. are also capable to extract higher amount of arsenic from contaminated water. These weed flora having As tolerance mechanism in their system and thus remediate As contaminated water vis-à-vis continue their life cycle. In this chapter we will discuss about As extraction potential of various aquatic and semi aquatic weeds from contaminated water, their tolerance mechanism, future scope and their application in future world mitigating As contamination in water resources.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3