Development of a Novel Electromagnetic Rewarming Technology for the Cryopreservation of Stem Cells with Large Volume

Author:

Ren Shen,Shu Zhiquan,Pan Jiaji,Peng Ji,Wang Junlan,Zhao Chunhua,Gao Dayong

Abstract

Applications of stem cells have been playing significant roles in scientific and clinical settings in the last few decades. The foundation of these approaches is successful cryopreservation of stem cells for future use. However, so far we can only cryopreserve stem cell suspension of small volumes in the order of 1 mL mostly due to the lack of an effective rewarming technique. Rapid and uniform rewarming has been approved to be beneficial, and sometimes, indispensable for the survival of cryopreserved stem cells, inhibiting ice recrystallization or devitrification. Unfortunately, the conventional water bath thawing method failed in providing the rapid and uniform rewarming. The conversion of electromagnetic (EM) energy into heat provides a possible solution to this problem. This chapter will focus on (1) analysis of the combined EM and heat transfer phenomenon in the rewarming of a biospecimen, (2) numerical investigation of the rewarming system, (3) practical setup of an EM resonance system, and (4) test of heating performance with large volume of cells.

Publisher

IntechOpen

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sound waves for solving the problem of recrystallization in cryopreservation;Scientific Reports;2023-05-10

2. Cryobiology for biobanking;SCIENTIA SINICA Vitae;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3