Deep Learning Approach for Raman Spectroscopy

Author:

Wathsala N. Jinadasa M.H.,C. Kahawalage Amila,Halstensen Maths,Skeie Nils-Olav,Jens Klaus-Joachim

Abstract

Raman spectroscopy is a widely used technique for organic and inorganic chemical material identification. Throughout the last century, major improvements in lasers, spectrometers, detectors, and holographic optical components have uplifted Raman spectroscopy as an effective device for a variety of different applications including fundamental chemical and material research, medical diagnostics, bio-science, in-situ process monitoring and planetary investigations. Undoubtedly, mathematical data analysis has been playing a vital role to speed up the migration of Raman spectroscopy to explore different applications. It supports researchers to customize spectral interpretation and overcome the limitations of the physical components in the Raman instrument. However, large, and complex datasets, interferences from instrumentation noise and sample properties which mask the true features of samples still make Raman spectroscopy as a challenging tool. Deep learning is a powerful machine learning strategy to build exploratory and predictive models from large raw datasets and has gained more attention in chemical research over recent years. This chapter demonstrates the application of deep learning techniques for Raman signal-extraction, feature-learning and modelling complex relationships as a support to researchers to overcome the challenges in Raman based chemical analysis.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3