Perspective Chapter: Negative Thermal Gradient Gas Chromatography

Author:

Rosenberg Erwin,Klampfl Bernhard,D. Müller Robert

Abstract

Gas chromatography is typically operated in isothermal mode for optimum separation of a mixture of compounds with a narrow boiling point range, or in temperature-programmed mode, which strives to achieve a compromise between separation efficiency and time. Temperature gradients also keep the peak widths nearly constant over a wide range of retention times, enhancing the detectability of the later eluting peaks. In this chapter, the use of negative thermal gradients for gas chromatography (NTGGC) – for the sake of simplicity, subsequently only denoted as thermal gradient-gas chromatography, TGGC – shall be discussed. (N)TGGC is achieved by producing a stationary temperature gradient along the relatively short GC column in a proprietary experimental setup that allows cooling on one end of the column and heating on the other. The sample is injected into the hot end of the GC column, and analytes move towards the colder end of the column. Along their passage through the column, they are focused by the increasingly lower temperature of the stationary phase. This leads to a focusing of the peaks as they reach the cold column end. With appropriate temperature programming, very fast (sub-minute) chromatography with excellent resolution can be achieved on short GC columns. The present contribution will both discuss the theory behind this unusual, but highly performant mode of gas chromatographic separation, and also the hardware aspects of this technique. Relevant examples will be presented which highlight both the speed and the separation power by which (N)TGGC excels in comparison with regular temperature-programmed GC.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3