Author:
Zakaria Jamaluddin,Fadzli Mohd Salleh Mohd
Abstract
Orthogonal frequency division multiplexing (OFDM) is a prominent system in transmitting multicarrier modulation (MCM) signals over selective fading channel. The system offers to attain a higher degree of bandwidth efficiency, higher data transmission, and robust to narrowband frequency interference. However, it incurs a high peak-to-average power ratio (PAPR) where the signals work in the nonlinear region of the high-power amplifier (HPA) results in poor performance. Besides, an attractive dynamic wavelet analysis and its derivatives such as wavelet packet transform (WPT) demonstrates almost the same criteria as the OFDM in MCM system. Wavelet surpasses Fourier based analysis by inherent flexibility in terms of windows function for non-stationary signal. In wavelet-based MCM systems (wavelet OFDM (WOFDM) and Wavelet packet OFDM (WP-OFDM)), the constructed orthogonal modulation signals behaves similar to the fast Fourier transform (FFT) does in the conventional OFDM (C-OFDM) system. With no cyclic prefix (CP) need to be applied, these orthogonal signals hold higher bandwidth efficiency. Hence, this chapter presents a comprehensive study on the manipulation of specified parameters using WP-OFDM, WOFDM and C-OFDM signals together with various wavelets under the additive white Gaussian noise (AWGN) channel.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献