Systems Biology Approaches towards Immunity against Plasmodium

Author:

Patgiri Himangshu,Khataniar Ankita,Boro Pitimoni,Baishnab Sushmita,Rajkhowa Sanchaita

Abstract

Malaria is one of the most devastating infectious diseases known to humans. It is caused by unicellular protozoan parasites belonging to the genus Plasmodium. Till date, over 200 species of Plasmodium have been formally described, and each species infects a certain range of hosts. However, the human infection is limited to only five of the species, of which P. falciparum is the most responsible. Due to the emergence of parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides which threaten the control programmes, new antimalarial therapeutics or approaches capable of predicting useful models of how different cells of the innate immune system function, is the need of the hour. Systems Immunology is a relatively recent discipline under Systems Biology to understand the structure and function of the immune system and how the components of the immune system work together as a whole. Thus, this chapter aims to give insight into the approaches of Systems Biology for investigating the immune factors that are formed during Plasmodium falciparum infection in the human body. Here, the numerous experimental and computational works with the ongoing methodologies using Systems Biology approaches along with the interactions of host and pathogen will be discussed.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3