Verification and Validation of Supersonic Flutter of Rudder Model for Experiment

Author:

Qiu Ju,Liu Chaofeng

Abstract

The abrupt and explosive nature of flutter is a dangerous failure mode, which is closely related to the structural modes. In this work, the principal goal of the study is to produce the model, which is used very accurately for flutter predictions. Mode correctness of the model can correct the test deflects by the optimization technique----Sequential Quadratic Programming (SQP). The optimization of two finite element models for two flight conditions, transonic and supersonic speeds, had the different objectives which were defined by the nonlinear and linear eigenvector errors. The first and second frequencies were taken as constraints. And the stiffness of the rotation shaft was also restricted to some limits. The stiffness of the rudder axle was defined as design variables. Experiments were performed for considering springs both in plunge and in torsion of the rudder shaft. When the comparison between experimental information and analyzed calculations is described, generally excellent agreement is obtained between experimental and calculated results, and aeroelastic instability is predicted that agrees with experimental observations. Comments are also given concerning improvements of the flutter speed to be made to the model with changing stiffness of the rudder axle. Most importantly, V&V Method is used to provide the confidence in the results from simulation in this paper. Firstly, it introduces experimental data from Ground Vibration Test to build up or modify the Finite Element Model, during the Verification phase, which makes simulated models closer to the real world and guarantees satisfaction of final computed results to requirements, such as airworthiness. Secondly, the flutter consequence is validated by wind tunnel test. These enhancements could find potential applications in industrial problems.

Publisher

IntechOpen

Reference29 articles.

1. Liu, C., F. and Qiu, J. (2016). “A fluid-structure coupling analysis method of Aeroelasticity, Beihang University Press”, 11. (In Chinese)

2. Bisplinghof, R. L. and Ashley, H. (1962). “Principles of Aeroelasticity”, Wiley, New York

3. Hassig, H. (1971). “An Approximate True Damping Solution of the Flutter Equation by Determinant Iteration”, Journal of Aircraft, Vol. 8, No. 11, 885–890

4. Lawrence, J. A., and Jackson, P. (1968). “Comparison of Different Methods of Assessing the Free Oscillatory Characteristics of Aeroelastic systems”, Aeronautical Research Council, London, England

5. Abel, I. (1979). “An Analytical Technique for Predicting the Characteristics of a Flexible Wing Equipped with an Active Flutter-Suppression System and Comparison with Wind-Tunnel Data”, NASA, TP-1367

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3