Abstract
Arsenic uptake in rice (Oryza sativa) is recognized as a global health emergency, requiring the development of agronomic protocols to reduce human exposure to rice having elevated arsenic concentrations. Recent rice-arsenic investigations have centered around numerous agronomic approaches, including: (i) rice breeding and cultivar selection, (ii) altering irrigation water applications to reduce arsenic soil availability, (iii) application of soil amendments which either support arsenic adsorption on iron-plaque or provide antagonistic competition for root uptake, and (iv) phytoremediation. Given that rice cultivars vary in their arsenic accumulation capacity, this manuscript review concentrates on the influences of water management, soil amendments, and phytoremediation approaches on arsenic accumulation. Water management, whether alternating wetting and drying or furrow irrigation, provides the greatest potential to alleviate arsenic uptake in rice. Phytoremediation has great promise in the extraction of soil arsenic; however, the likelihood of multiple years of cultivating hyperaccumulating plants and their proper disposal is a serious limitation. Soil amendments have been soil applied to alter the soil chemistry to sequester arsenic or provide competitive antagonism towards arsenic root uptake; however, existing research efforts must be further field-evaluated and documented as producer-friendly protocols. The usage of soil amendments will require the development of agribusiness supply chains and educated extension personnel before farm-gate acceptance.