Introductory Chapter: Anomaly Detection – Recent Advances, AI and ML Perspectives and Applications
Author:
Krishna Parimala Venkata
Reference9 articles.
1. Cekić M. Anomaly Detection in Medical Time Series with Generative Adversarial Networks: A Selective Review. London: IntechOpen; 2023. DOI: 10.5772/intechopen.112582
2. Esmaeili M et al. Generative adversarial networks for anomaly detection in biomedical imaging: A study on seven medical image datasets. IEEE Access. 2023;11:17906-17921. DOI: 10.1109/ACCESS.2023.3244741
3. Copiaco A, Himeur Y, Amira A, Mansoor W, Fadli F, Atalla S, et al. An innovative deep anomaly detection of building energy consumption using energy time-series images. Engineering Applications of Artificial Intelligence. 2023;119:105775. DOI: 10.1016/j.engappai.2022.105775
4. Himeur Y, Elnour M, Fadli F, et al. AI-big data analytics for building automation and management systems: A survey, actual challenges and future perspectives. Artificial Intelligence Review. 2023;56:4929-5021. DOI: 10.1007/s10462-022-10286-2
5. Javaheri D, Gorgin S, Lee J-A, Masdari M. Fuzzy logic-based DDoS attacks and network traffic anomaly detection methods: Classification, overview, and future perspectives. Information Sciences. 2023;626:315-338. DOI: 10.1016/j.ins.2023.01.067