Application of Nanomaterials in Environmental Improvement

Author:

Salman Ali Ali

Abstract

In recent years, researchers used many scientific studies to improve modern technologies in the field of reducing the phenomenon of pollution resulting from them. In this chapter, methods to prepare nanomaterials are described, and the main properties such as mechanical, electrical, and optical properties and their relations are determined. The investigation of nanomaterials needed high technologies that depend on a range of nanomaterials from 1 to 100 nm; these are scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractions (XRD). The applications of nanomaterials in environmental improvement are different from one another depending on the type of devices used, for example, solar cells for producing clean energy, nanotechnologies in coatings for building exterior surfaces, and sonochemical decolorization of dyes by the effect of nanocomposite.

Publisher

IntechOpen

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wastewater and its Management – A Review;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

2. Nanotechnology, Nanomaterials And Composites – An Overview;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

3. Effect of Codoping Zinc Oxide Nanoparticles with Sulfur and Nitrogen on Its Energy Bandgap, Antioxidant Properties, and Antibacterial Activity;Advances in Materials Science and Engineering;2024-02-26

4. A comprehensive review on the novel approaches using nanomaterials for the remediation of soil and water pollution;Alexandria Engineering Journal;2024-01

5. Engineered exosomes-based theranostic strategy for tumor metastasis and recurrence;Asian Journal of Pharmaceutical Sciences;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3