Data Mining in Electrical Machine Maintenance Reports

Author:

Athanasios Karlis,Georgios Falekas,Dimosthenis Verginadis,A. Antonino-Daviu Jose

Abstract

Industrial electrical machine maintenance logs pertinent information, such as fault causality and earlier indications, in the form of a semi-standardized report, previously written and now in digital form. New practices in predictive maintenance, state-of-the-art condition monitoring, include increasing applications of machine learning. Reports contain a large volume of natural text in various languages and semantics, proving costly for feature extraction. This chapter aims to present novel techniques in information extraction to enable literature access to this untapped information reserve. A high level of correlation between text features and fault causality is noted, encouraging research for extended application in the scope of electrical machine maintenance, especially in artificial intelligence indication detection training. Furthermore, these innovative models can be used for decision-making during the repair. Information from well-trained classifiers can be extrapolated to advance fault causality understanding.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3