Scaling Subspace-Driven Approaches Using Information Fusion

Author:

Ghanem Sally,Krim Hamid

Abstract

In this work, we seek to exploit the deep structure of multi-modal data to robustly exploit the group subspace distribution of the information using the Convolutional Neural Networks (CNNs) formalism. Upon unfolding the set of subspaces constituting each data modality, and learning their corresponding encoders, an optimized integration of the generated inherent information is carried out to yield a characterization of various classes. Referred to as deep Multimodal Robust Group Subspace Clustering (DRoGSuRe), this approach is compared against the independently developed state-of-the-art approach named Deep Multimodal Subspace Clustering (DMSC). Experiments on different multimodal datasets show that our approach is competitive and more robust in the presence of noise.

Publisher

IntechOpen

Reference42 articles.

1. Elhamifar E, Vidal R. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013;35:2765-2781

2. Favaro P, Vidal R, Ravichandran A. A closed form solution to robust subspace estimation and clustering. In: CVPR 2011. Colorado springs, Colorado, USA: IEEE; 2011. pp. 1801-1807

3. Li CG, Vidal R. Structured sparse subspace clustering: A unified optimization framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE; 2015. pp. 277-286

4. Bian X, Panahi A, Krim H. Bi-sparsity pursuit: A paradigm for robust subspace recovery. Signal Processing. 2018;152:148-159

5. Yang AY, Rao SR, Ma Y. Robust statistical estimation and segmentation of multiple subspaces. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06). New York, NY, USA: IEEE; 2006. p. 99

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3