Author:
Hung Shao-Wen,Chen Chia-Chi,Chen Hsiao-Yun,Hung Ying-Ching,Huang Ping-Min,Lin Chia-Yu
Abstract
Microglia typically exist in a resting state of a mature brain and monitors the brain environment. In response to brain injuries or immunological stimuli, however, microglia are readily activated. In their activated state, they can serve diverse beneficial functions essential for enhancing neuron survival through the release of trophic and anti-inflammatory factors. Under certain circumstances, such as sustained epilepsy, however, microglia become overactivated and can induce significant and highly detrimental neurotoxic effects by the excessive production of a large array of cytotoxic factors, such as nitric oxide and proinflammatory cytokines. Neuroinflammation has been identified in epileptogenic tissue and is suspected of participating in epileptogenesis. Recent evidence has shown the effects of anti-inflammation and protection against ischemic brain injury by inhibiting soluble epoxide hydrolase (sEH) pharmacologically and genetically. We assume that sEH inhibition might be also beneficial to prevent inflammatory processes caused by seizures and subsequent chronic epilepsy. In the present study, we investigated whether sEH is involved in overactivated microglia-induced neuroinflammation and subsequent epileptogenesis in a mouse model of temporal lobe epilepsy. Overactivated microglia will be detected by using imaging techniques. It is hoped that the results of the present study would provide a better understanding of the roles of sEH and microglia in epileptogenesis.