Compact Incoherent Multidimensional Imaging Systems Using Static Diffractive Coded Apertures

Author:

Anand Vijayakumar,Hock Ng Soon,Katkus Tomas,Smith Daniel,Balasubramani Vinoth,P. Linklater Denver,J. Magistretti Pierre,Depeursinge Christian,P. Ivanova Elena,Juodkazis Saulius

Abstract

Incoherent holographic imaging technologies, in general, involve multiple optical components for beam splitting—combining and shaping—and in most cases, require an active optical device such as a spatial light modulator (SLM) for generating multiple phase-shifted holograms in time. The above requirements made the realization of holography-based products expensive, heavy, large, and slow. To successfully transfer the holography capabilities discussed in research articles to products, it is necessary to find methods to simplify holography architectures. In this book chapter, two important incoherent holography techniques, namely interference-based Fresnel incoherent correlation holography (FINCH) and interferenceless coded aperture correlation holography (I-COACH), have been successfully simplified in space and time using advanced manufacturing methods and nonlinear reconstruction, respectively. Both techniques have been realized in compact optical architectures using a single static diffractive optical element manufactured using lithography technologies. Randomly multiplexed diffractive lenses were manufactured using electron beam lithography for FINCH. A quasi-random lens and a mask containing a quasi-random array of pinholes were manufactured using electron beam lithography and photolithography, respectively, for I-COACH. In both cases, the compactification has been achieved without sacrificing the performances. The design, fabrication, and experiments of FINCH and I-COACH with static diffractive optical elements are presented in details.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3