A Microfluidic Device as a Drug Carrier

Author:

Ejeta Fikadu

Abstract

The development of nanomedicine or medical nanotechnology, has brought important new ways to the development of medicines and biotechnology products. As a result of groundbreaking discoveries in the use of nanoscale materials significant commercialization initiatives have been launched and are at the forefront of the rapidly expanding field of nanotechnology by using smart particles. Microfluidic technologies use nano-and micro-scale manufacturing technologies to develop controlled and reproducible liquid microenvironments. Lead compounds with controlled physicochemical properties can be obtained using microfluidics, characterized by high productivity, and evaluated by biomimetic methods. Microfluidics, for example, can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but it can also continuously create three-dimensional environments to mimic physiological and/or pathological processes. Materials with smart properties can be manipulated to respond in a controllable and reversible way, modifying some of their properties as a result of external stimuli such as mechanical stress or a certain temperature. All in all, microfluidic technology offers a potential platform for the rapid synthesis of various novel drug delivery systems. Therefore, these smart particles are equally necessary as the drug in drug delivery.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3