Photovoltaic-Thermal Solar Collectors – A Rising Solar Technology for an Urban Sustainable Development

Author:

O. Cabral Diogo

Abstract

The increasing global warming awareness related to climate change due to the high emissions of carbon dioxide in recent decades linked all nations into a common cause, which requires ambitious efforts to combat climate change by adapting energy systems to its effects. This book chapter aims at investigating the potential role of Photovoltaic-Thermal (PVT) solar collector technologies for an urban sustainable development based on the current state-of-art, system components and subsidies for PVT technologies. PVT technologies are a practical solution to compete with isolated systems such as photovoltaic (PV) modules and solar thermal collectors if a significant reduction in manufacturing cost is achieved, coupled with an increased energy production performance. Therefore, its success is intensely linked to the capacity of the PVT industry/researchers to scale down its current system cost and complexity in a way that can shorten the cost/performance gap to both PV and Solar Thermal (ST) technologies. The knowledge gained presented in this book chapter has been acquired through an extensive literature review, market surveys and project development made by several PVT experts with extensive expertise in the development of PVT technologies, which establishes the foundations for more efficient and cost-effective PVT solar collectors.

Publisher

IntechOpen

Reference27 articles.

1. Hadorn JC, Kramer KM, Herrando M, Ryan G, Brottier L, Zenhäusern D, Sifnaios I. Technology Position Paper: PVT collectors and Systems. IEA SHC Task 60. 2020. Available from: https://www.iea-shc.org/Data/Sites/1/publications/IEA-SHC-Task60-PVT-Technology-Position-Paper.pdf

2. Cabral D. Reflector Optimization for Low Concentration Photovoltaic-Thermal Solar Collectors, PhD thesis. Gävle: Gävle University Press; 2022. Available from: https://www.diva-portal.org/smash/get/diva2:1612644/FULLTEXT01.pdf

3. Fraunhofer ISE. Photovoltaics Report. Updated in 30 October 2020. 2020

4. Aste N, Leonforte F, Del Pero C. Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Solar Energy. 2015;112:85-99

5. Würfel P, Würfel U. Physics of Solar Cells. From Principles to New Concepts. Weinheim, Germany: WILEY-VCH; 2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3