Quantum Dots as Material for Efficient Energy Harvesting

Author:

Kwaśnicki Paweł

Abstract

The essence of the photovoltaic effect is the generation of electric current with the help of light. Absorption of a quantum of the energy of light (photon) generates the appearance of an electron in the conduction band and holes in the valence band. The illumination of the material, in general, is not uniform, which leads to the appearance of spatially inhomogeneous charge in the band valence and conductivity. Besides, electrons and holes generally diffuse with different velocities, which leads to the creation of a separated space charge and generation of an electric field (sometimes called the Dember field). This field inhibits further separation of cargo. The reverse processes also take place in the system, i.e. electron recombination and holes. These processes are destructive from the point of view of photovoltaics and should be minimized, which is achieved; thanks to the spatial separation of electrons and holes. The point is that electrons and holes were carried away from the area where they formed as quickly as possible, yes to prevent their spontaneous recombination. The use of semiconductor quantum dots introduced into the photoelectric material is currently a very important and effective way to increase the efficiency of photoelectric devices and photovoltaic cells. This is due to the fact that in semiconductor photoelectric materials with no quantum dots, there is always some upper limit of the wavelength λgrgr≃1,24/EgeV for absorbed light, above which the light is not absorbed.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3